Turning to Biomimicry: The Unrecognized Importance of Studying Animals

6265559098_1eb11e71f3_b (1)
Picture Credit: Jiuguang Wang | Snake Robot at Robotics Institute | 2011 | Flickr

What comes to mind when you think of biology and making a difference in the world? Cancer research, gene therapy, or the treatment of diseases are generally the most common responses since these fields never fail to generate public buzz. Unsurprisingly, most people probably didn’t think about the study of animals. Zoology is the field responsible for that objective. Or at least it used to be.

Truth be told, zoology is not an area of study that attracts much attention or respect. In the eyes of most people, studying animals for a living seems more like a hobby or even a career fantasy that a naive child would imagine having as an adult. Unless you want to work for a zoo, some might say, it’s silly and unrealistic. Working with animals just seems too much like playing and lacks the seriousness that biochemistry, genetics, and medicine entails. Even on the Internet, the most common answer to why one should study zoology is “because it’s fun.” Another common answer is “because we must protect endangered species.” Given these rather lukewarm responses, it’s no wonder that most people don’t associate zoology with making an impact in the world.

Yet despite signs of zoology’s rapidly fading reputation, the study of animals is still going strong. It just happens to fall under a plethora of different names.

“Zoology is already dead,” stated John Long, Jr., a biology and cognitive science professor at Vassar College. “This old field has been pulled apart and its pieces put into new disciplines like biomimicry, animal behavior, evolution, biomechanics, biorobotics, […and etc.] While we call the study of animals ‘zoology,’ no one calls themselves a ‘zoologist’ anymore.”

While the term “zoology” is now considered outdated, the study of animals has spread across a wide range of different fields from robotics to cognitive science. Scientists and engineers alike have started to use animals to learn more about the workings of machines and the world. This integration has led to more far-reaching contributions to society than one might expect. Of the many categories, two main fields come to mind: robot biomimicry and animal-inspired innovations.

Robot biomimicry refers to machines or robots that imitate the structure and behavior of real animals in a way that takes advantage of that animal’s survival skill. Scientists and engineers study the design and mechanics behind different animals and attempt to make a simpler yet more efficient copies of the mechanism. For example, a team of scientists at Stanford researched how geckos use their toes to climb vertically in order to design a robot that can easily scale walls. A gecko’s toe contains hundreds of flap-like ridges, each of which has millions of tiny hairs with even tinier split ends. This special feature allows geckos to utilize weak attractive or repulsive forces called “van der Waals” forces in order to stick to walls and ceilings on a molecular level. Using an adhesive that incorporates the same strategy, the Stanford team is currently building robots that can climb rough concrete as well as smooth glass surfaces, making them perfect for reaching places that humans cannot normally access.

Similarly, roboticist Howie Choset of Carnegie Mellon University teamed up with researchers to study the locomotion of sidewinders, a species of desert snakes, to build a robot that can travel across rough terrains without getting stuck in ruts. By studying patterns in a sidewinder’s movements, Choset and his team not only built a robot that can help archaeologists explore dangerous archaeological sites, but they also learned more about the snake species in general.

On the other hand, animal-inspired designs use aspects of certain animals to improve something we already have. For instance, scientists at Harvard University have looked into why humpback whales are so agile in the water despite weighing more than 60,000 pounds. They later found that the bumps on the whale’s flippers allow whales to swim with great speed and flexibility. Excited with their discovery, the team designed turbine blades with similar bumps that were so effective at reducing drag, that Canada’s largest producer of ventilation fans licensed the design. This animal-inspired innovation will also be applied to transportation devices. For example, improvements can be made to stabilize airplanes and boost the speed of submarines.

Of course, there are countless other stories of researchers inspired by the creativity found in animals. In Japan, the design of a kingfisher bird’s bill was studied to improve the country’s famous bullet trains. Boat companies around the world are researching shark skin to design boats that are both faster and self-cleaning. Some experts even believe that examining the bioluminescence from fireflies or deep-sea squids could lead to an eco-friendly replacement of public street lamps. Studying animals allows us to use nature as our guide to create revolutionary designs and products. Every species possesses a unique survival mechanism or trait molded by countless centuries of evolution, and many of these could benefit humanity in unimaginable ways. Tapping into this rich reserve of creativity is our way to find new ideas when our own brainstorming comes up dry.

With all this promise, why does the study of animals suffer from such a dearth of public awareness and excitement? It could be because so many people maintain the stereotype that working with animals is synonymous to just playing with them. The preconception of this type of work as a lackadaisical, frivolous endeavor unfortunately remains deeply embedded in society.

Surprisingly, an interesting parallel can be drawn between the study of animals and environmentalism. In his essay, “Are You an Environmentalist or Do You Work for a Living?”, historian Richard White affirms that the public disdain towards environmentalism stems from its perceived detachment from work. Whether it’s logging, mining, or ranching, many environmentalists protest these encroaching forms of industry and argues that nature should be left pristine and untouched. While the popular slogan of “save the forest” isn’t a bad message, prioritizing the purity of a piece of land over the livelihood of other people has left a negative impression of the movement as a whole. It sends a disturbing signal that a person’s right to enjoy nature and its beauty overrules a person’s will to work in order to feed a family and find success. As White remarks, “Nature has become an arena for human play and leisure. Saving an old-growth forest or creating a wilderness area is certainly a victory for some of the creatures that live in those places, but it is just as certainly a victory for backpackers and a defeat for loggers. It is a victory for leisure and a defeat for work.”

Although White’s paper had stirred up some controversy among environmentalists, there has been a noticeable shift towards environmental work that directly benefits society. Environmentalism now provides a larger focus towards chemical tests on water sources and technology that benefits both nature and humans. As White had stated in his paper, environmentalists have to promote a form of environmentalism that directly promotes the progress of society for the movement to be taken seriously.

Similarly, the study of animals is currently going down the same path. In accordance with the rise of new animal-inspired inventions, a greater focus towards benefiting society may change the public outlook on the field. Thus, we should promote discussions on creative solutions inspired by nature rather than place emphasis on how fun it is to work with animals. Answering how and why different animals survive and flourish in a world ruled by natural selection could inspire wonder within people and ultimately ignite public interest.

After all, research into animals is perhaps humankind’s greatest source of ingenuity and imagination. With it, revolutionary ideas infused with the genius of nature await humankind in the future.

Originally published on April 23, 2016, in Boilerplate MagazineWhen Humans Don’t Have All the Answers – A Turn to Biomimicry

A Bright, Eco-Friendly Future: Bioluminescence as Our Next Light Source

Picture Credit: Lit by Bioluminescence | Glowee

Imagine a world where the streets glow with a dreamlike shade of blue as if you’re walking in the presence of ethereal spirits wandering the city. While that image sounds too mythical to be real, one start-up company is working to create this otherworldly environment for the future. Glowee, a French company planning on harnessing the power of bioluminescent bacteria, has officially debuted after successfully crowd-funding in May 2015. Their goal: to replace the electric street lamps of France with blue microbial lamps.

Bioluminescence is an organism’s ability to generate light in the dark. This is different from fluorescence, which involves absorbing light from an external source and immediately re-emitting a modified version of that light. While fluorescence is a physical process, bioluminescence is a chemical one that occurs due to an enzyme, luciferase. In the biochemical reaction, luciferase catalyzes the light-emitting pigment luciferin with oxygen in order to create light. For humans, bioluminescence has the potential to be­come a valuable source of renewable energy.

Consider the latest global push towards reduc­ing CO2 emissions and fighting climate change. At the 2015 UN Climate Change Conference, world leaders came to an agreement that everyone must do everything they can to cut down our energy consumption. While politicians can promise to limit emissions, real progress cannot occur with­out a viable green energy solution. Rather than an immediate transition to green energy, what if we tackled the problem one chunk at a time? This is where inspirations from nature and the creativity of science mesh together. For instance, biolumi­nescence doesn’t require any electricity to pro­duce light. Given this fact, researchers are investi­gating engineered bioluminescence as a possible alternative to regular street lighting.

Replacing electric lamps with bioluminescent ones may seem almost trivial in the face of cut­ting global energy consumption, but reducing the number of public street lamps is a very necessary first step. In truth, lighting up the streets every night is an incredibly expensive task. According to the U.S. Energy Information Administration, the U.S. spent a total of $11 billion on outdoor lighting in 2012, 30 percent of which went to waste in areas that didn’t use or need that light. Furthermore, a recent research study determined that there are currently about 300 million total streetlights around the world and that num­ber will grow to 340 million by 2025. With such severe drawbacks that come with electrical lighting, the use of bioluminescent light is a way to alleviate some if not most of that cost.

Today, the race to find the best form of engi­neered bioluminescence continues to bring us various creative inventions and solutions. At Syr­acuse University, a small team of scientists led by Rabeka Alam discovered a way to chemically at­tach genetically-altered luciferase enzymes from fireflies directly onto the surface of nanorods to make them glow. In a process they called Bioluminescence Resonance Energy Transfer (BRET), the nanorod produces a bright light whenever the luciferase enzyme interacts with the fuel source and can produce different colors depending on the size of the rod. According to one scientist on the team, “It’s conceivable that someday firefly-coated nanorods could be in­serted into LED-type lights that you don’t have to plug in.”

On the other side of the world, Dutch designer Daan Roosegaarde has been working to­gether with the tech company Bioglow to create bioluminescent trees to light up the streets. Incorporating important re­search from the University of Cambridge, Roose­gaarde and his team spliced DNA containing the light-emitting properties from bioluminescent organisms into the chloroplasts of plants. As a re­sult, those plants can produce both luciferase and luciferin that allows them to glow at night.

For Glowee, the plan is to harness biolumines­cence by using Aliivibrio fischeri, a species of bioluminescent bacteria found in certain marine animals like the Hawaiian bobtail squid. They first produce a gel containing the bioluminescent bac­teria along with various nutrients that keep the bacteria alive. Then, the gel is used to fill small, transparent containers, allowing the light to glow through. This method not only makes the light source wireless but also customizable depending on its purpose and design. These bioluminescent lamps would certainly appeal to shop owners in France, especially since the French government recently passed a law that forces all businesses to turn off their lights at 1 a.m. to fight light pollution.

Unfortunately, despite countless efforts towards perfecting engineered bioluminescence, it may still be a long while before our streets are lit by genetically-altered plants or bacteria. The two main obstacles in this endeavor are the rel­atively dim nature of the lights as well as their short lifespan. Even with Glowee’s bio-lights, the company’s current prototype can only produce light up to three days. Some argue that the cost and production of these bioluminescent products greatly overshadow their benefits, saying that such eco-friendly alternatives can never catch up to electrical lighting. While there may be lim­itations, all these projects by businesses and in­stitutions signify the public’s growing desire for real change.

A lot of these projects were funded not by the government but by Kickstarter and other funding platforms. Perhaps many of the backers were just mesmerized by the aesthetic appeal, but the public nevertheless recognizes the potential behind engineered bioluminescence. With continuous effort and scientific innovation, a town or a neighbor­hood powered by living organisms instead of electricity can be a reality. By following the ghost­ly blue light ahead, we would take a tremendous first step towards a world where humans and na­ture can truly coexist.

Originally published on March 30, 2016, in The Miscellany News: Scientists note perks of bioluminescence